A cylinder has inner and outer radii of 12 cm12cm and 15 cm15cm, respectively, and a mass of 4 kg4kg. If the cylinder's frequency of rotation about its center changes from 5 Hz5Hz to 8 Hz8Hz, by how much does its angular momentum change?

1 Answer
Mar 28, 2016

"change of angular momentum="0,4428*pichange of angular momentum=0,4428π

Explanation:

"change of angular momentum="I*Delta omega
I:"moment of inertia"
Delta omega:"change of angular velocity"
I=1/2*m*(a^2+b^2)"cylinder axis at center"
m:4 kg
a=12 cm=0,12 m
b=15 cm=0,15 m
I=1/ cancel(2)* cancel(4) ((0,12)^2+(0,15)^2)
I=2*(0,0144+0,0225)
I=2*0,0369
I=0,0738
Delta omega=omega_2-omega_1
Delta omega=2*pi*f_2-2*pi*f_1
Delta omega=2*pi(f_2-f_1)
f_1=5 Hz" "f_2=8 Hz
Delta omega=2*pi(8-5)
Delta omega=6*pi

"change of angular momentum="0,0738*6*pi
"change of angular momentum="0,4428*pi