A cylinder has inner and outer radii of 12 cm12cm and 18 cm18cm, respectively, and a mass of 6 kg6kg. If the cylinder's frequency of rotation about its center changes from 7 Hz7Hz to 6 Hz6Hz, by how much does its angular momentum change?

1 Answer
Apr 17, 2016

Delta P=-28,8pi

Explanation:

"1-calculate the changing of the angular velocity"
"2-calculate the moment of inertia for cylinder"
"3-calculate changing of the angular momentum"

"1)....................................................................."
f_i=7Hz" initial frequency"
f_l=6Hz" last frequency"
Delta omega=omega_l-omega_i" changing of the angular velocity"

omega_l=2*pi*f_l" "omega_l=2*pi*6" "omega_l=12pi " "(rad)/s

omega_i=2*pi*f_i" "omega_i=2*pi*7" "omega_i=14pi" "(rad)/s

Delta omega=12pi-14pi

Delta omega=-2pi" "(rad)/s
2)........................................................................
I=1/2*m(r_1^2+r_2^2)
"moment of inertia for cylinder which has inner and outer radius"

m=6kg

r_1=12 cm=0,12 m
r_1^2=1,44

r_2=18cm=0,18m
r_2^2=3,24
I=1/2*6(1,44+3,24)

I=3*4,68

I=14,04

3)............................................................................
Delta P=I*Delta omega" angular momentum change"
Delta P=-14,4*2pi

Delta P=-28,8pi