A line segment has endpoints at (1 ,2 )(1,2) and (3 ,4 )(3,4). The line segment is dilated by a factor of 6 6 around (2 ,5 )(2,5). What are the new endpoints and length of the line segment?

1 Answer
Jan 27, 2018

(-4,-13),(8,-1),~~16.97(4,13),(8,1),16.97

Explanation:

"label the endpoints "A(1,2)" and "B(3,4)label the endpoints A(1,2) and B(3,4)

"label the centre of dilatation "C(2,5)label the centre of dilatation C(2,5)

"let A' and B' be the images of A and B"let A' and B' be the images of A and B

"then"then

vec(CA')=color(red)(6)vec(CA)

rArrula'-ulc=6(ula-ulc)

rArrula'-ulc=6ula-6ulc

rArrula'=6ula-5ulc

color(white)(rArrula')=6((1),(2))-5((2),(5))

color(white)(rArrula')=((6),(12))-((10),(25))=((-4),(-13))

rArrA'=(-4,-13)

"and "

vec(CB')=color(red)(6)vec(CB)

rArrulb'-ulc=6(ulb-ulc)

rArrulb'=6ulb-5ulc

color(white)(rArrulb')=6((3),(4))-5((2),(5))

color(white)(rArrulb)=((18),(24))-((10),(25))=((8),(-1))

rArrB'=(8,-1)

"calculate the length using the "color(blue)"distance formula"

•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)

"let "(x_1,y_1)=(-4,-13)" and "(x_2,y_2)=(8,-1)

d=sqrt((8+4)^2+(-1+13)^2)

color(white)(d)=sqrt(144+144)=sqrt288=12sqrt2~~16.97" 2 d.p"