Let PP be the original point (2,4)(2,4)
Let QQ be the original point (5,3)(5,3)
and
Let CC be the center of dilation, (3,8)(3,8)
Consider the vector vec(CP)−−→CP
color(white)("XXX")vec(CP)=(2,4)-(3,8)=(-1,-4)XXX−−→CP=(2,4)−(3,8)=(−1,−4)
Dilation by a factor of 33 will scale this vector up by a factor of 33
So PP will move to the new location:
color(white)("XXX")hat(P)=C+3vec(CP)XXXˆP=C+3−−→CP
color(white)("XXXX")=(3,8)+3(-1,4)XXXX=(3,8)+3(−1,4)
color(white)("XXXX")=(3-3,8-12)XXXX=(3−3,8−12)
color(white)("XXXX")=(0,-4)XXXX=(0,−4)
Similarly
color(white)("XXX")vec(CQ)=(5,3)-(2,4)=(3,-1)XXX−−→CQ=(5,3)−(2,4)=(3,−1)
and new location for QQ at
color(white)("XXX")hat(Q)=(3,8)+3(3,-1)XXXˆQ=(3,8)+3(3,−1)
color(white)("XXXX")=(12,5)XXXX=(12,5)
The length of the new line segment will be (using the Pythagorean Theorem)
color(white)("XXX")abs(hat(P)hat(Q))=sqrt((12-0)^2+(5-(-4))^2)XXX∣∣ˆPˆQ∣∣=√(12−0)2+(5−(−4))2
color(white)("XXX")=sqrt(12^2+9^2)XXX=√122+92
color(white)("XXX")=sqrt(225)XXX=√225
color(white)("XXX")=15XXX=15