A line segment has endpoints at (3 ,2 )(3,2) and (7 , 5)(7,5). The line segment is dilated by a factor of 4 4 around (2 , 3)(2,3). What are the new endpoints and length of the line segment?
1 Answer
Apr 21, 2017
Explanation:
let
A=(3,2),B=(7,5)" and " C=(2,3)A=(3,2),B=(7,5) and C=(2,3)
"and " A',B'" be the image of A and B under the dilatation"
vec(CA)=ula-ulc=((3),(2))-((2),(3))=((1),(-1))
rArrvec(CA')=4((1),(-1))=((4),(-4))
rArrA'=(2+4,3-4)=(6,-1)color(red)(larr)
vec(CB)=ulb-ulc=((7),(5))-((2),(3))=((5),(2))
rArrvec(CB')=4((5),(2))=((20),(8))
rArrB'=(2+20,3+8)=(22,11)color(red)(larr) To calculate length use the
color(blue)"distance formula"
color(red)(bar(ul(|color(white)(2/2)color(black)(d=sqrt((x_2-x_1)^2+(y_2-y_1)^2))color(white)(2/2)|)))
"let " (x_1,y_1)=(6,-1)" and " (x_2,y_2)=(22,11)
d_(A'B')=sqrt((22-6)^2+(11+1)^2)
color(white)(d_(A'B'))=sqrt(256+144)=sqrt400
rArrd_(A'B')=20" units"