A line segment has endpoints at (7 ,2 )(7,2) and (1 ,8 )(1,8). The line segment is dilated by a factor of 6 6 around (4 ,5 )(4,5). What are the new endpoints and length of the line segment?

1 Answer
Jan 28, 2018

(22,-13),(-14,23),~~37.4(22,13),(14,23),37.4

Explanation:

"label the endpoints "A(7,2)" and "B(1,8)label the endpoints A(7,2) and B(1,8)

"let A' and B' be the images of A and B"let A' and B' be the images of A and B

"let the centre of dilatation be C"let the centre of dilatation be C

rArrvec(CA')=color(red)(6)vec(CA)

rArrula'-ulc=6(ula-ulc)

rArrula'-ulc=6ula-6ulc

rArrula'=6ula-5ulc

color(white)(rArrula')=6((7),(2))-5((4),(5))

color(white)(rArrula')=((42),(12))-((20),(25))=((22),(-13))

rArrA'=(22,-13)

rArrvec(CB')=color(red)(6)vec(CB)

rArrulb'-ulc=6ulb-6ulc

rArrulb'=6ulb-5ulc

color(white)(rArrulb')=6((1),(8))-5((4),(5))

color(white)(rArrulb')=((6),(48))-((20),(25))=((-14),(23))

rArrB'=(-14,23)

"calculate the length using the "color(blue)"distance formula"

•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)

"let "(x_1,y_1)=(22,-13)" and "(x_2,y_2)=(-14,23)

d=sqrt((-14-22)^2+(23-13)^2)=sqrt(1296+100)

rArrd=sqrt1396~~37.4" to 1 dec. place"