A line segment has endpoints at (7 ,6 ) and (5 ,8 ). The line segment is dilated by a factor of 4 around (2 ,1 ). What are the new endpoints and length of the line segment?
1 Answer
Explanation:
Let the endpoints be A (7 ,6) and B (5 ,8) and their images be A' and B', respectively, under the dilation.
Let the centre of dilatation be C (2 ,1)
vec(CA)=ula-ulc=((7),(6))-((2),(1))=((5),(5))
rArrvec(CA')=4((5),(5))=((20),(20))
rArrA'=(2+20,1+20)=(color(red)(22,21)) Similar process to obtain coordinates of B'
vec(CB)=ulb-ulc=((5),(8))-((2),(1))=((3),(7))
rArrvec(CB')=4((3),(7))=((12),(28))
rArrB'=(2+12,1+28)=(color(red)(14,29))
"new endpoints are "(22,21)" and " (14,29) To calculate the length, use the
color(blue)"distance formula"
color(red)(bar(ul(|color(white)(2/2)color(black)(d=sqrt((x_2-x_1)^2+(y_2-y_1)^2))color(white)(2/2)|)))
where(x_1,y_1),(x_2,y_2)" are 2 coordinate points" The 2 points here are (22 ,21) and (14 ,29)
let
(x_1,y_1)=(22,21)" and " (x_2,y_2)=(14,29)
d=sqrt((14-22)^2+(29-21)^2)=sqrt(64+64)=sqrt128
"length of line segment" =sqrt128=8sqrt2≈11.31