A line segment has endpoints at (7 ,6 ) and (5 ,8 ). The line segment is dilated by a factor of 4 around (2 ,1 ). What are the new endpoints and length of the line segment?

1 Answer
Jan 30, 2017

(22,21),(14,29)" and "8sqrt2

Explanation:

Let the endpoints be A (7 ,6) and B (5 ,8) and their images be A' and B', respectively, under the dilation.
Let the centre of dilatation be C (2 ,1)

vec(CA)=ula-ulc=((7),(6))-((2),(1))=((5),(5))

rArrvec(CA')=4((5),(5))=((20),(20))

rArrA'=(2+20,1+20)=(color(red)(22,21))

Similar process to obtain coordinates of B'

vec(CB)=ulb-ulc=((5),(8))-((2),(1))=((3),(7))

rArrvec(CB')=4((3),(7))=((12),(28))

rArrB'=(2+12,1+28)=(color(red)(14,29))

"new endpoints are "(22,21)" and " (14,29)

To calculate the length, use the color(blue)"distance formula"

color(red)(bar(ul(|color(white)(2/2)color(black)(d=sqrt((x_2-x_1)^2+(y_2-y_1)^2))color(white)(2/2)|)))
where (x_1,y_1),(x_2,y_2)" are 2 coordinate points"

The 2 points here are (22 ,21) and (14 ,29)

let (x_1,y_1)=(22,21)" and " (x_2,y_2)=(14,29)

d=sqrt((14-22)^2+(29-21)^2)=sqrt(64+64)=sqrt128

"length of line segment" =sqrt128=8sqrt2≈11.31