A particle moves with velocity v=6t from time t=0 to t=10. How do you find the average velocity with respect to a) time and b) distance?

1 Answer
Jun 14, 2018

bb( a) ) 30

bb( b) ) 40

No units quoted or stated

Explanation:

a)

With respect to time , with v(t) = 6t:

v_("ave") =( int_(bb(Delta t)) \ bb(dt) qquad v(t))/(bb(Delta t))

:. v_("ave") =( int_0^10 \ dt qquad 6t)/10

= 1/10 [3t^2]_0^10 bb(= 30)

b)

With respect to distance :

v_("ave") =( int_(bb(Delta x)) \ bb(dx) qquad v(x))/(bb(Delta x))

Now:

  • (dv)/(dx) = (dv)/(dt) (dt)/(dx) = 6/v , variable t has been eliminated

Separating out:

v \ dv = 6 \ dx

And integrating:

v^2/2 = 6x + C

The IV:

  • v(t = 0) = 0, x(t = 0) = 0

  • implies v(x = 0) = 0 implies C = 0

So: bb( v = sqrt(12x) )

And, eg, from the v-t graph:

  • x(t = 10) = 300

:. v_("ave") =( int_0^300 \ dx qquad sqrt(12x))/(300) qquad triangle

ASIDE :

  • int \ dx \ sqrt(12x) = int \ d(u/12) \ sqrt(u)

= 1/12 (u)^(3/2)/(3/2) + C= 1/18 (u)^(3/2) + C

Evaluating:

implies triangle = 1/300 ( (12x)^(3/2)/18 )_0^300

bb( = 40)