A particle moves with velocity #v=6t# from time t=0 to t=10. How do you find the average velocity with respect to a) time and b) distance?

1 Answer
Jun 14, 2018

#bb( a) )# 30

#bb( b) )# 40

No units quoted or stated

Explanation:

a)

With respect to time , with #v(t) = 6t#:

#v_("ave") =( int_(bb(Delta t)) \ bb(dt) qquad v(t))/(bb(Delta t))#

#:. v_("ave") =( int_0^10 \ dt qquad 6t)/10 #

#= 1/10 [3t^2]_0^10 bb(= 30)#

b)

With respect to distance :

#v_("ave") =( int_(bb(Delta x)) \ bb(dx) qquad v(x))/(bb(Delta x))#

Now:

  • #(dv)/(dx) = (dv)/(dt) (dt)/(dx) = 6/v #, variable #t# has been eliminated

Separating out:

#v \ dv = 6 \ dx #

And integrating:

#v^2/2 = 6x + C#

The IV:

  • #v(t = 0) = 0, x(t = 0) = 0#

  • # implies v(x = 0) = 0 implies C = 0#

So: #bb( v = sqrt(12x) )#

And, eg, from the #v-t# graph:

  • #x(t = 10) = 300#

#:. v_("ave") =( int_0^300 \ dx qquad sqrt(12x))/(300) qquad triangle#

ASIDE :

  • #int \ dx \ sqrt(12x) = int \ d(u/12) \ sqrt(u) #

#= 1/12 (u)^(3/2)/(3/2) + C= 1/18 (u)^(3/2) + C#

Evaluating:

#implies triangle = 1/300 ( (12x)^(3/2)/18 )_0^300#

#bb( = 40)#