A solid disk, spinning counter-clockwise, has a mass of 12 kg and a radius of 3/8 m. If a point on the edge of the disk is moving at 7/5 m/s in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Jul 3, 2017

The angular momentum is =3.15kgm^2s^-1 and the angular velocity is =3.73rads^-1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=7/5ms^(-1)

r=3/8m

So,

omega=(7/5)/(3/8)=56/15=3.73rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=12*(3/8)^2/2=0.84kgm^2

The angular momentum is

L=0.84*3.73=3.15kgm^2s^-1