A solid disk, spinning counter-clockwise, has a mass of 12 kg and a radius of 5/2 m. If a point on the edge of the disk is moving at 4/3 m/s in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Jul 22, 2017

The angular momentum is =20kgm^2s^-1 and the angular velocity is =0.053rads^-1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=4/3ms^(-1)

r=5/2m

So,

omega=(4/3)/(5/2)=8/15=0.053rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=12*(5/2)^2/2=75/2kgm^2

The angular momentum is

L=75/2*8/15=20kgm^2s^-1