A solid disk, spinning counter-clockwise, has a mass of 12 kg12kg and a radius of 6 m6m. If a point on the edge of the disk is moving at 15 m/s15ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Dec 25, 2016

The angular momentum is =720pi=2262kgm^2s^(-1)=720π=2262kgm2s1
The angular velocity is =(10pi)/3 =10.5rads^(-1)=10π3=10.5rads1

Explanation:

The angular velocity,

omega=v/r=15/6Hz=5/3*2pirads^(-1)=(10pi)/3 rads^(-1)ω=vr=156Hz=532πrads1=10π3rads1

The angular momentum is

L=IomegaL=Iω

Where II is the moment of inertia

For a solid disc, I=1/2*m*r^2I=12mr2

I=1/2*12*6^2=216 kgm^2I=121262=216kgm2

The angular momentum is

L=216*(10pi)/3=(720pi)kg m^2s^(-1)L=21610π3=(720π)kgm2s1