A solid disk, spinning counter-clockwise, has a mass of 16 kg16kg and a radius of 3/7 m37m. If a point on the edge of the disk is moving at 8/5 m/s85ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Apr 19, 2017

The angular momentum is =381.95kgm^2s^-1=381.95kgm2s1
The angular velocity is =3.73rads^-1=3.73rads1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=8/5ms^(-1)

r=3/7m

So,

omega=(8/5)/(3/7)=56/15=3.73rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=16*(8/5)^2/2=512/25=102.4kgm^2

The angular momentum is

L=102.4*3.73=381.95kgm^2s^-1