A solid disk, spinning counter-clockwise, has a mass of 16 kg16kg and a radius of 4/7 m47m. If a point on the edge of the disk is moving at 8/5 m/s85ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Mar 26, 2017

The angular momentum is =7.31kgm^2s^-1=7.31kgm2s1
The angular velocity is =2.8rads^-1=2.8rads1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=8/5ms^(-1)

r=4/7m

So,

The angular velocity is omega=(8/5)/(4/7)=56/20=2.8rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

mass, m=16

For a solid disc, I=(mr^2)/2

So, I=16*(4/7)^2/2=2.61kgm^2

L=I*omega=2.61*2.8=7.31kgm^2s^-1