A solid disk, spinning counter-clockwise, has a mass of 4 kg4kg and a radius of 3/7 m37m. If a point on the edge of the disk is moving at 7/9 m/s79ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Apr 11, 2017

The angular momentum is =0.67kgm^2s^-1=0.67kgm2s1
The angular velocity is =1.81rads^-1=1.81rads1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=7/9ms^(-1)

r=3/7m

So,

omega=(7/9)/(3/7)=49/27=1.81rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=4*(3/7)^2/2=18/49kgm^2

The angular momentum is

L=18/49*1.81=0.67kgm^2s^-1