A solid disk, spinning counter-clockwise, has a mass of 4 kg4kg and a radius of 3 m3m. If a point on the edge of the disk is moving at 2/5 m/s25ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Aug 5, 2017

The angular momentum is =2.4kgm^2s^-1=2.4kgm2s1
The angular velocity is =0.13rads^-1=0.13rads1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=2/5ms^(-1)

r=3m

So,

The angular velocity is omega=(2/5)/(3)=0.13rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=4*(3)^2/2=18kkgm^2

The angular momentum is

L=0.13*18=2.4kgm^2s^-1