A solid disk, spinning counter-clockwise, has a mass of 4 kg and a radius of 4 m. If a point on the edge of the disk is moving at 12 m/s in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Apr 8, 2017

The angular momentum is =96kgm^2s^-1
The angular velocity is =3rads^-1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=12ms^(-1)

r=4m

So,

omega=(12)/(4)=3rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=4*(4)^2/2=32kgm^2

The angular momentum is

L=32*3=96kgm^2s^-1