A solid disk, spinning counter-clockwise, has a mass of 4 kg4kg and a radius of 7 m7m. If a point on the edge of the disk is moving at 12 m/s12ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Oct 25, 2017

The angular momentum is =168kgm^2s^-1=168kgm2s1 and the angular velocity is =12/7rads^-1=127rads1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=12ms^(-1)

r=7m

So,

omega=(12)/(7)=12/7rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=4*(7)^2/2=98kgm^2

The angular momentum is

L=98*12/7=168kgm^2s^-1