A solid disk, spinning counter-clockwise, has a mass of 5 kg5kg and a radius of 16 m16m. If a point on the edge of the disk is moving at 8 m/s8ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Mar 16, 2017

The angular momentum is =2010.6kgm^2s^-1=2010.6kgm2s1
The angular velocity is =3.14rads^-1=3.14rads1

Explanation:

The angular velocity is

omega=v/rω=vr

where,

v=8ms^(-1)v=8ms1

r=16mr=16m

So,

omega=(8)/(16)*2pi=3.1416rads^-1ω=8162π=3.1416rads1

The angular momentum is L=IomegaL=Iω

where II is the moment of inertia

For a solid disc, I=(mr^2)/2I=mr22

So, I=5*(16)^2/2=640kgm^2I=5(16)22=640kgm2

L=640*3.1416=2010.6kgm^2s^-1L=6403.1416=2010.6kgm2s1