A solid disk, spinning counter-clockwise, has a mass of 5 kg5kg and a radius of 2 m2m. If a point on the edge of the disk is moving at 8 m/s8ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
May 7, 2017

The angular momentum is =40gm^2s^-1=40gm2s1
The angular velocity is =4rads^-1=4rads1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=8ms^(-1)

r=2m

So,

omega=(8)/(2)=4rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=5*(2)^2/2=10kgm^2

The angular momentum is

L=10*4=40gm^2s^-1