A solid disk, spinning counter-clockwise, has a mass of 5 kg5kg and a radius of 4 m4m. If a point on the edge of the disk is moving at a rate of 2 m/s2ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
May 5, 2017

The angular momentum is =20kgm^2s^-1=20kgm2s1
The angular velocity is =0.5rads-1=0.5rads1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=2ms^(-1)

r=4m

So,

omega=(2)/(4)=0.5rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=5*(4)^2/2=40kgm^2

The angular momentum is

L=40*0.5=20kgm^2s^-1