A solid disk, spinning counter-clockwise, has a mass of 5 kg5kg and a radius of 4 m4m. If a point on the edge of the disk is moving at 7 m/s7ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Dec 18, 2016

The angular momentum is L=(140pi) kgm^2s^(-1)L=(140π)kgm2s1
The angular velocity is omega=(7/2pi) rads^(-1)ω=(72π)rads1

Explanation:

The angular velocity is omega=v/rω=vr

v=7ms^(-1)v=7ms1

r=4mr=4m

So,

omega=7/4*2pi rads^(-1)=7/2pi rads^(-1)ω=742πrads1=72πrads1

The angular momentum is L=IomegaL=Iω

Where,

I=I= moment of inertia

For a solid disc, I=1/2mr^2I=12mr2

I=1/2*5*4*4=40 kgm^2I=12544=40kgm2

The angular momentum is

L=Iomega=40*7/2pikgm^2s^(-1)L=Iω=4072πkgm2s1

L=140pi kgm^2s^(-1)L=140πkgm2s1