A solid disk, spinning counter-clockwise, has a mass of 6 kg6kg and a radius of 3 m3m. If a point on the edge of the disk is moving at 1/2 m/s12ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Feb 22, 2017

The angular momentum is =28.3kgm^2s^-1=28.3kgm2s1
The angular velocity =1.047rads^-1=1.047rads1

Explanation:

The angular velocity is

omega=v/rω=vr

where,

v=1/2ms^(-1)v=12ms1

r=3mr=3m

So,

omega=(1/2)/3*2pi=pi/3=1.047rads^-1ω=1232π=π3=1.047rads1

The angular momentum is L=IomegaL=Iω

where II is the moment of inertia

For a solid disc, I=(mr^2)/2I=mr22

So, I=6*(3)^2/2=27kgm^2I=6(3)22=27kgm2

L=1.047*27=28.3kgm^2s^-1L=1.04727=28.3kgm2s1