A solid disk, spinning counter-clockwise, has a mass of 7 kg7kg and a radius of 1/2 m12m. If a point on the edge of the disk is moving at 6/5 m/s65ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
May 3, 2017

The angular momentum is =14.7kgm^2s^-1=14.7kgm2s1
The angular velocity is =2.4rads^-1=2.4rads1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=6/5ms^(-1)

r=1/2m

So,

omega=(6/5)/(1/2)=2.4rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=7*(1/2)^2/2=49/8kgm^2

The angular momentum is

L=49/8*2.4=14.7kgm^2s^-1