A solid disk, spinning counter-clockwise, has a mass of 7 kg7kg and a radius of 3 m3m. If a point on the edge of the disk is moving at 6/7 m/s67ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Aug 3, 2017

The angular momentum is =9kgm^2s^-1=9kgm2s1 and the angular velocity is =0.29rads^-1=0.29rads1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=6/7ms^(-1)

r=3m

So,

omega=(6/7)/(3)=2/7=0.29rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=7*(3)^2/2=63/2kgm^2

The angular momentum is

L=2/7*63/2=9kgm^2s^-1