A solid disk, spinning counter-clockwise, has a mass of 7 kg7kg and a radius of 5 m5m. If a point on the edge of the disk is moving at 2 m/s2ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Oct 29, 2017

omega=0.4color(white)is^-1ω=0.4is1
L=7color(white)ikgm^2s^-1L=7ikgm2s1

Explanation:

Angular Velocity:

omega=(Deltatheta)/(Deltat)

and v=r*((Deltatheta)/(Deltat))=r omega

So, omega=v/r

Here,

  • v=2m/s
  • r=5m/

thereforeomega=(2m/s)/(5m)=0.4color(white)is^-1

Angular Momentum:

L=Iomega

Here,

  • I("moment of inertia")=(mr^2)/2
    =(7kg*(5m)^2)/2=17.5color(white)ikgm^2
  • omega=0.4color(white)i"rads"^-1

thereforeL=17.5color(white)ikgm^2*0.4color(white)i"rads"^-1
=7color(white)ikgm^2s^-1