A solid disk, spinning counter-clockwise, has a mass of 8 kg8kg and a radius of 3/2 m32m. If a point on the edge of the disk is moving at 9/8 m/s98ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Nov 20, 2016

The angular momentum is =27/4kgms^(-1)=274kgms1
The angular velocity is =3/4Hz=34Hz

Explanation:

The angular velocity omegaω is
omega=v/rω=vr

where
v=velocity=9/8ms^(-1)v=velocity=98ms1
r=radius=3/2mr=radius=32m

so, omega=9/8*2/3=3/4 Hzω=9823=34Hz

The angular momentum is

L=IomegaL=Iω

Where II=moment of inertia

In the case of a solid disc, I=(mr^2)/2I=mr22

m=m=mass of the disc, =8kg=8kg

r=r= radius of the disc, =3/2 m=32m

Therefore, I=1/2*8*9/4=9 kgm^2I=12894=9kgm2

The angular momentum is L=9*3/4=27/4kgms^(-1)L=934=274kgms1