A solid disk, spinning counter-clockwise, has a mass of 8 kg8kg and a radius of 3/2 m32m. If a point on the edge of the disk is moving at 3 m/s3ms in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
May 6, 2017

The angular momentum is =18kgm^2s^-1=18kgm2s1
The angular velocity is =2rads^-1=2rads1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=3ms^(-1)

r=3/2m

So,

omega=(3)/(3/2)=2rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=8*(3/2)^2/2=9kgm^2

The angular momentum is

L=9*2=18kgm^2s^-1