A solid disk, spinning counter-clockwise, has a mass of 8 kg and a radius of 5/2 m. If a point on the edge of the disk is moving at 9/8 m/s in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Apr 25, 2017

The angular momentum is =11.25kgm^2s^-1
The angular velocity is =0.45rads^-1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=9/8ms^(-1)

r=5/2m

So,

omega=(9/8)/(5/2)=0.45rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=8*(5/2)^2/2=25kgm^2

The angular velocity is

L=25*0.45=11.25kgm^2s^-1