A solid disk, spinning counter-clockwise, has a mass of 9 kg and a radius of 6 m. If a point on the edge of the disk is moving at 15 m/s in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Aug 9, 2017

The angular momentum is =405kgm^2s^-1 and the angular velocity is =2.5rads^-1

Explanation:

The angular velocity is

omega=(Deltatheta)/(Deltat)

v=r*((Deltatheta)/(Deltat))=r omega

omega=v/r

where,

v=15ms^(-1)

r=6m

So,

omega=(15)/(6)=5/2=2.5rads^-1

The angular momentum is L=Iomega

where I is the moment of inertia

For a solid disc, I=(mr^2)/2

So, I=9*(6)^2/2=162kgm^2

The angular momentum is

L=162*2.5=405kgm^2s^-1