A triangle as corners at (3 ,1)(3,1), (5 ,2)(5,2), and (9 ,4)(9,4). If the triangle is dilated by a factor of 4 4 about #(1 ,9), how far will its centroid move?

1 Answer

The displacement from old centroid to the new centroid is
d=sqrt596d=596
d=24.413" "d=24.413 units

Explanation:

From the given, let P_1(x_1, y_1)=(3, 1)P1(x1,y1)=(3,1) and P_2(x_2, y_2)=(5, 2)P2(x2,y2)=(5,2) and P_3(x_3, y_3)=(9, 4)P3(x3,y3)=(9,4) and R(1, 9)R(1,9)

Compute the centroid C_1(x_c, y_c)C1(xc,yc) of the triangle first

x_c=(x_1+x_2+x_3)/3=(3+5+9)/3=17/3xc=x1+x2+x33=3+5+93=173
y_c=(y_1+y_2+y_3)/3=(1+2+4)/3=7/3yc=y1+y2+y33=1+2+43=73

The centroid C_1(x_c, y_c)=(17/3, 7/3)C1(xc,yc)=(173,73)

Determine the new centroid C_2(x_c', y_c')

The ratio:
(C_2 R)/(C_1 R)=4/1
Find x_c'
(x_c'-1)/(17/3-1)=4/1

x_c'=1+4(17/3-1)

x_c'=1+56/3

x_c'=59/3

Find y_c'

(y_c'-9)/(7/3-9)=4/1

y_c'=9+4(7/3-9)

y_c'=9+(4(7-27))/3
y_c'=9-80/3
y_c'=(27-80)/3

y_c'=-53/3

The New Centroid is at C_2(59/3, -53/3)=(19.67, -17.67)

Let us determine the displacement d

d=sqrt((x_c-x_c')^2+(y_c-y_c')^2)

d=sqrt((59/3-17/3)^2+(-53/3-7/3)^2)

d=sqrt((59/3-17/3)^2+(-53/3-7/3)^2)

d=sqrt(14^2+(-20)^2)
d=sqrt596
d=24.413" "units

God bless....I hope the explanation is useful.