A triangle as corners at (5 ,3 )(5,3), (1 ,4 )(1,4), and (3 ,5 )(3,5). If the triangle is dilated by a factor of 3 3 about #(2 ,2 ), how far will its centroid move?

1 Answer
Mar 14, 2017

The distance is =5.83=5.83

Explanation:

Let ABCABC be the triangle

A=(5.3)A=(5.3)

B=(1,4)B=(1,4)

C=(3.5)C=(3.5)

The centroid of triangle ABCABC is

C_c=((5+1+3)/3,(3+4+5)/3)=(3,4)Cc=(5+1+33,3+4+53)=(3,4)

Let A'B'C' be the triangle after the dilatation

The center of dilatation is D=(2,2)

vec(DA')=3vec(DA)=3*<3,1> = <9,3>

A'=(9+2,3+2)=(11,5)

vec(DB')=3vec(DB)=3*<-1,2> = <-3,6>

B'=(-3+2,6+2)=(-1,11)

vec(DC')=3vec(Dc)=3*<2,3> = <6,9>

C'=(6+2,9+2)=(8,11)

The centroid C_c' of triangle A'B'C' is

C_c'=((11-1+8)/3,(5+11+11)/3)=(6,9)

The distance between the 2 centroids is

C_cC_c'=sqrt((6-3)^2+(9-4)^2)

=sqrt(9+25)=sqrt34=5.83