A triangle has corners at (-1 ,7 ), (-5 ,-3 ), and (2 ,9 ). If the triangle is dilated by a factor of 5 about point #(-7 ,1 ), how far will its centroid move?

1 Answer
Mar 20, 2017

The distance is =24

Explanation:

Let ABC be the triangle

A=(-1,7)

B=(-5,-3)

C=(2,9)

The centroid of triangle ABC is

C_c=((-1-5+2)/3,(7+(-3)+9)/3)=(4/3,13/3)

Let A'B'C' be the triangle after the dilatation

The center of dilatation is D=(-7,1)

vec(DA')=5vec(DA)=5*<6,6> = <30,30>

A'=(30-7,30+1)=(23,31)

vec(DB')=5vec(DB)=5*<2,-4> = <10,-20>

B'=(10-7,-20+1)=(3,-19)

vec(DC')=5vec(DC)=5*<9,8> = <45,40>

C'=(45-7,40+1)=(38,41)

The centroid C_c' of triangle A'B'C' is

C_c'=((23+3+38)/3,(31-19+41)/3)=(64/3,53/3)

The distance between the 2 centroids is

C_cC_c'=sqrt((64/3-4/3)^2+(53/3-13/3)^2)

=1/3sqrt(60^2+40^2)=72.11/3=24