A triangle has corners at (-2 ,1 ), (6 ,-3 ), and (-1 ,4 ). If the triangle is dilated by a factor of 5 about point #(4 ,-6 ), how far will its centroid move?

1 Answer
Mar 21, 2017

The distance is =29

Explanation:

Let ABC be the triangle

A=(-2,1)

B=(6,-3)

C=(-1,4)

The centroid of triangle ABC is

C_c=((-2+6-1)/3,(1+(-3)+4)/3)=(1,2/3)

Let A'B'C' be the triangle after the dilatation

The center of dilatation is D=(4,-6)

vec(DA')=5vec(DA)=5*<-6,7> = <-30,35>

A'=(-30+4,35-6)=(-26,29)

vec(DB')=5vec(DB)=5*<2,3> = <10,15>

B'=(10+4,15-6)=(14,9)

vec(DC')=5vec(DC)=5*<-5,10> = <-25,50>

C'=(-25+4,50-6)=(-19,44)

The centroid C_c' of triangle A'B'C' is

C_c'=((-26+14-19)/3,(29+9+44)/3)=(-31/3,82/3)

The distance between the 2 centroids is

C_cC_c'=sqrt((-31/3-1)^2+(82/3-2/3)^2)

=1/3sqrt(34^2+80^2)=86.93/3=29