A triangle has corners at (2 ,2 )(2,2), (4 ,-7 )(4,7), and (3 ,4 )(3,4). If the triangle is dilated by a factor of 5 5 about point #(1 ,-9 ), how far will its centroid move?

1 Answer
Mar 30, 2017

The centroid will move by =8.69=8.69

Explanation:

Let ABCABC be the triangle

A=(2,2)A=(2,2)

B=(4,-7)B=(4,7)

C=(3,4)C=(3,4)

The centroid of triangle ABCABC is

C_c=((2+4+3)/3,(2+(-7)+4)/3)=(3,-1/3)Cc=(2+4+33,2+(7)+43)=(3,13)

Let A'B'C' be the triangle after the dilatation

The center of dilatation is D=(1,-9)

vec(DA')=5vec(DA)=5*<1,11> = <5,55>

A'=(5+1,55-9)=(6,46)

vec(DB')=5vec(DB)=5*<3,2> = <15,10>

B'=(15+1,10-9)=(16,1)

vec(DC')=5vec(DC)=5*<2,13> = <10,65>

C'=(10+1,65-9)=(11,56)

The centroid C_c' of triangle A'B'C' is

C_c'=((6+16+11)/3,(46+1+56)/3)=(11,103/3)

The distance between the 2 centroids is

C_cC_c'=sqrt((11-3)^2+(103/3+1/3)^2)

=1/3sqrt(64*9+104^2)=26.08/3=8.69