We use ABC for points; and a,b,c for opposite sides.
angle between a and b = hat C = 1/12 piˆC=112π
angle between b and c = hat A = 2/3 piˆA=23π
hat B = pi - hat C - hat A = pi (1 - 1/12 - 2/3) = 1/4 piˆB=π−ˆC−ˆA=π(1−112−23)=14π
Let H in ACH∈AC, such that BHBH is perpendicular to ACAC.
|BH| = h, |AH| = m|BH|=h,|AH|=m and we want S_Delta = 1/2 * 20 * h
tan hat A = h / m Rightarrow m = h / tan hat A
tan hat C = h / (20 - m) Rightarrow 20 - m = h / tan hat C
20 - h / tan hat A = h / tan hat C
20 = h ( 1 / tan hat A + 1 / tan hat C)
20 = h ( cos hat A / sin hat A + cos hat C / sin hat C)
h = 20 * frac{sin A sin C}{sin A cos C + sin C cos A} = 20/ sin frac{3 pi}{4} * sin frac{2 pi }{3} sin frac{pi}{12}
S_Delta = 10h = 200 * 2/sqrt 2 * sqrt 3 / 2 * sin frac{pi }{12}