A triangle has sides A, B, and C. If the angle between sides A and B is (pi)/12π12, the angle between sides B and C is (2pi)/32π3, and the length of B is 20, what is the area of the triangle?

1 Answer
Dec 15, 2015

100 sqrt 6 * sin frac{pi }{12}1006sinπ12

Explanation:

We use ABC for points; and a,b,c for opposite sides.

angle between a and b = hat C = 1/12 piˆC=112π

angle between b and c = hat A = 2/3 piˆA=23π

hat B = pi - hat C - hat A = pi (1 - 1/12 - 2/3) = 1/4 piˆB=πˆCˆA=π(111223)=14π

Let H in ACHAC, such that BHBH is perpendicular to ACAC.

|BH| = h, |AH| = m|BH|=h,|AH|=m and we want S_Delta = 1/2 * 20 * h

enter image source here

tan hat A = h / m Rightarrow m = h / tan hat A

tan hat C = h / (20 - m) Rightarrow 20 - m = h / tan hat C

20 - h / tan hat A = h / tan hat C

20 = h ( 1 / tan hat A + 1 / tan hat C)

20 = h ( cos hat A / sin hat A + cos hat C / sin hat C)

h = 20 * frac{sin A sin C}{sin A cos C + sin C cos A} = 20/ sin frac{3 pi}{4} * sin frac{2 pi }{3} sin frac{pi}{12}

S_Delta = 10h = 200 * 2/sqrt 2 * sqrt 3 / 2 * sin frac{pi }{12}