A triangle has sides A, B, and C. If the angle between sides A and B is (pi)/4π4, the angle between sides B and C is (5pi)/125π12, and the length of B is 4, what is the area of the triangle?

1 Answer

Area=4/3*(3+sqrt(3))Area=43(3+3)

Area=6.3094Area=6.3094 square units

Explanation:

Try drawing the triangle
Angle A=(5pi)/12A=5π12 and angle C=pi/4C=π4 and side b=4b=4
side bb is the base of the triangle. There 's a need to solve for the height hh from angle B to side b to compute the area.

h cot A+h cot C=bhcotA+hcotC=b
h=b/(cot A+cot C)=4/(cot ((5pi)/12)+cot (pi/4)h=bcotA+cotC=4cot(5π12)+cot(π4)
From double angle formulas:

cot ((5pi)/12)=cos(pi/4+pi/6)/sin(pi/4+pi/6)=(cos (pi/4)*cos (pi/6)-sin (pi/4)*sin (pi/6))/(sin (pi/4)*cos (pi/6)+cos (pi/4)*sin (pi/6))cot(5π12)=cos(π4+π6)sin(π4+π6)=cos(π4)cos(π6)sin(π4)sin(π6)sin(π4)cos(π6)+cos(π4)sin(π6)

cot ((5pi)/12)=(sqrt3-1)/(sqrt3+1)cot(5π12)=313+1
Solve hh now
h=4/(cot ((5pi)/12)+cot (pi/4))=4/((sqrt3-1)/(sqrt3+1)+1)h=4cot(5π12)+cot(π4)=4313+1+1
h=2/3*(3+sqrt3)h=23(3+3)
Solve Area=1/2*b*hArea=12bh
Area=1/2*4*2/3*(3+sqrt3)Area=12423(3+3)

Area=4/3*(3+sqrt(3))Area=43(3+3)

Area=6.3094Area=6.3094 square units

Have a nice day !!! from the Philippines .