A triangle has sides A, B, and C. If the angle between sides A and B is (pi)/4π4, the angle between sides B and C is (7pi)/127π12, and the length of B is 5, what is the area of the triangle?

1 Answer
Oct 29, 2017

Area=17.075units^2=17.075units2

Explanation:

cancelpi^color(magenta)1/cancel4^color(magenta)1xxcancel180^color(magenta)45/cancelpi^color(magenta)1=45^@=anglec

(7cancelpi^color(magenta)1)/cancel12^color(magenta)1xxcancel180^color(magenta)15/cancelpi^color(magenta)1=105^@=anglea

180^@-(105^@+45^@)=30^@=angleb

A/(sinanglea)=B/(sinangleb)

A=(sin105^@xx5)/sin30^@

A=4.829629131/0.5

A=9.659258262

color(magenta)(A=9.659units to the nearest 3 decimal places

C/(sinanglec)=B/(sinangleb)

C=(5*sin45^@)/sin30^@

C=3.535533906/0.5

C=7.071067812

color(magenta)(C=7.071units to the nearest 3 decimal places

Area=1/2BCsinanglea

0.5*5*7.071067812*sin105^@

Area=17.07531755units^2

Areacolor(magenta)(=17.075units^2 to the nearest 3 decimal places

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check:-

Hero's formula:-

S=(a+b+c)/2

S=(9.659+5+7.071)/2

Area=sqrt(s(s-a)(s-b)(s-c))

S=10.865units

Areasqrt(10.865(10.865-9.659)(10.865-5)(10.865-7.071))

Area=sqrt(10.865(1.206)(5.865)(3.794))

Areacolor(magenta)(=17.075units^2 to the nearest 3 decimal places