A triangle has sides A, B, and C. Sides A and B have lengths of 5 and 9, respectively. The angle between A and C is (17pi)/2417π24 and the angle between B and C is (pi)/8π8. What is the area of the triangle?

1 Answer
Jan 19, 2016

area of the triangle ~~ 12.889" square unites"12.889 square unites to 3 decimal places

Explanation:

Tony BTony B

color(blue)("Method")Method
Find the height h then use: "area=1/2xxAxxharea=12×A×h
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Consider the option to find C and hence h")Consider the option to find C and hence h

Cosine Rule:
C^2=A^2+B^2-2ABcos(/_bca)C2=A2+B22ABcos(bca)

Sine Rul:
C/(sin(/_bca)) = B/(sin(/_abc))=A/(sin(/_bac))Csin(bca)=Bsin(abc)=Asin(bac)

Both require that the angle /_bcabca is determined.
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Using: Sum of internal angles of a triangle =180^o-> (pi " radians")=180o(π radians)

color(blue)(=> /_bca=pi-(17pi)/24-pi/8 =pi/6 -> (30^o))bca=π17π24π8=π6(30o)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determining length of C")Determining length of C

Using the Sine Rule (simpler: no square roots!)

C/(sin(pi/6))=A/(sin(pi/8))Csin(π6)=Asin(π8)

Known: color(white)(...)sin(pi/6)=sin(30^o)= 1/2

color(brown)(=>C=1/2xx5/(sin(pi/8)) ~~6.499) to 3 decimal places
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determining height h")

Project the line cb to d such that a vertical line from 'a' forms 'ad' and /_bda=pi/2 ->(90^o)

Then /_dba= pi-(17pi)/24=(7pi)/24 ->52 1/2 " degrees"

Using basic trig
sin((7pi)/24) = h/C

=>h=Csin((7pi)/24)

color(brown)(h~~ 5.156) to 3 decimal places
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine area of triangle")

using: area = 1/2 xx Axx h

color(brown)("area "= 1/2xx 5xx5.156... ~~ 12.889" square unites" to 3 decimal places