I diagram usually helps to understand what is happening.
color(blue)("Plan")Plan
Find /_AB∠AB using sum of internal angles.
Use sin rule to determine length of side C
Determine length of h using sin
Area = C/2xxhC2×h
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine "/_AB)To determine ∠AB
Sum of internal angles of a triangle is 180^o ->pi180o→π
color(brown)(=>/_AB = pi-(7pi)/24 -(5pi)/8 = pi/12 -> 15^o)⇒∠AB=π−7π24−5π8=π12→15o
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine length of h")Determine length of h
color(green)("Value of h for condition 1")Value of h for condition 1
Axxsin( (7pi)/24)=hA×sin(7π24)=h
color(blue)(h=8xx sin((7pi)/24)color(red)(~~6.3568...))
color(green)("Value of h for condition 2")
Bxxsin(pi-(5pi)/8)=h
color(blue)(h= 3xxsin(pi-(5pi)/8)color(red)(~~ 2.7716...))
color(red)("Contradiction!")
underline(color(red)("We have two different values for h"))
color(blue)("Assumption: Length of A is the correct length")
color(blue)(=>h~~6.3568...)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the length of C")
A/sin((5pi)/8) =C/sin(Pi/12)
=>C=(Axxsin(pi/12))/(sin((5pi)/8)) =(8xxsin(pi/12))/(sin((5pi)/8))
color(blue)(C~~2.2411...)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine area")
Area = C/2xxh " "->" Area"~~2.2411/2xx6.3568
color(blue)(=> Area ~~7.1231" units"^2) to 4 decimal places