A triangle has sides with lengths: 3, 8, and 9. How do you find the area of the triangle using Heron's formula?
1 Answer
Jan 17, 2016
Explanation:
First, find the triangle's semiperimeter. This is used in Heron's formula.
s=(a+b+c)/2s=a+b+c2
Here,
s=(3+8+9)/2=10s=3+8+92=10
Heron's formula, which gives the area of a triangle, is
A=sqrt(s(s-a)(s-b)(s-c))A=√s(s−a)(s−b)(s−c)
A=sqrt(10(10-3)(10-8)(10-9))A=√10(10−3)(10−8)(10−9)
A=sqrt(10xx7xx2)A=√10×7×2
A=sqrt(2^2xx5xx7)A=√22×5×7
A=2sqrt35A=2√35