Consider the function f(x) = 4 x^3 − 4 xf(x)=4x34x on the interval [ −3 , 3 ], how do you find the average or mean slope of the function on this interval?

1 Answer
Oct 26, 2017

See the explanation below

Explanation:

The average or mean slope of a function f(x)f(x) on the interval [a,b][a,b] is

=(f(b)-f(a))/(b-a)=f(b)f(a)ba

Here,

f(x)=4x^3-4x=4x(x^2-1)f(x)=4x34x=4x(x21)

and the interval is =[-3,3]=[3,3]

f(3)=12(8)=96f(3)=12(8)=96

f(-3)=-12*8=-96f(3)=128=96

Therefore,

The mean slope is

=(f(3)-f(3))/(3-(-3))=(96+96)/(6)=32=f(3)f(3)3(3)=96+966=32

Then,

There exists c in (-3,3)c(3,3) such that

f'(c)=32

f'(x)=12x^2-4=4(3x^2-1)

Therefore,

f'(c)=4(3c^2-1)=32

3c^2-1=8

c^2=9/3=3

c=+-sqrt3

So,

+-sqrt3 in (-3,3)