By Kirchhoff
i_1=i_2+i_3i1=i2+i3
Along a loop
V_b=R_1i_1+R_2i_2Vb=R1i1+R2i2
Along the other loop
R_3i_3-V_b-R_2i_2=0R3i3−Vb−R2i2=0
Joining the equations
{(i_1=i_2+i_3),(V_b=R_1i_1+R_2i_2),(R_3i_3-V_b-R_2i_2=0):}
or also
((1,-1,-1),(R_1,R_2,0),(0,-R_2,R_3))((i_1),(i_2),(i_3))=((0),(V_b),(V_b))
Solving for i_1,i_2,i_3 we obtain
((i_1 = ((2 R_2 + R_3) V_b)/(R_2 R_3 + R_1 (R_2 + R_3))),(i_2 = ((R_3-R_1) V_b)/(R_2 R_3 + R_1 (R_2 + R_3))),(i_3 = ((R_1 + 2 R_2) V_b)/(R_2 R_3 + R_1 (R_2 + R_3))))
NOTE:
Supposing that the figures for R_1, R_2 are relative to maximum allowed dissipation, the problem would be formulated as:
solve for i_1,i_2,R_1,R_2 the system of equations
{
(i_1^2R_1=10),
(i_2^2R_2=15),
(i_1 = ((2 R_2 + R_3) V_b)/(R_2 R_3 + R_1 (R_2 + R_3))),
(i_2 = ((R_3-R_1) V_b)/(R_2 R_3 + R_1 (R_2 + R_3)))
:}
obtaining
i_1=2.8,i_2=1.78,R_1=1.27,R_2=4.74