Given a circuit with resistors R1 = 10 W, R2 = 15 W, R3 = 20 and voltage, V_b = 12VVb=12V, see figure, find the currents through all the resistors?

enter image source here

1 Answer
Jan 2, 2017

i_1 =12/13, i_2 = 12/65, i_3 = 48/65i1=1213,i2=1265,i3=4865

Explanation:

By Kirchhoff

i_1=i_2+i_3i1=i2+i3

Along a loop

V_b=R_1i_1+R_2i_2Vb=R1i1+R2i2

Along the other loop

R_3i_3-V_b-R_2i_2=0R3i3VbR2i2=0

Joining the equations

{(i_1=i_2+i_3),(V_b=R_1i_1+R_2i_2),(R_3i_3-V_b-R_2i_2=0):}

or also

((1,-1,-1),(R_1,R_2,0),(0,-R_2,R_3))((i_1),(i_2),(i_3))=((0),(V_b),(V_b))

Solving for i_1,i_2,i_3 we obtain

((i_1 = ((2 R_2 + R_3) V_b)/(R_2 R_3 + R_1 (R_2 + R_3))),(i_2 = ((R_3-R_1) V_b)/(R_2 R_3 + R_1 (R_2 + R_3))),(i_3 = ((R_1 + 2 R_2) V_b)/(R_2 R_3 + R_1 (R_2 + R_3))))

NOTE:

Supposing that the figures for R_1, R_2 are relative to maximum allowed dissipation, the problem would be formulated as:

solve for i_1,i_2,R_1,R_2 the system of equations

{ (i_1^2R_1=10), (i_2^2R_2=15), (i_1 = ((2 R_2 + R_3) V_b)/(R_2 R_3 + R_1 (R_2 + R_3))), (i_2 = ((R_3-R_1) V_b)/(R_2 R_3 + R_1 (R_2 + R_3))) :}

obtaining

i_1=2.8,i_2=1.78,R_1=1.27,R_2=4.74