Given p_1=(1,1), p_2=(6,3), p_3=(4,5) and the straight y = 1.5-(x-4) what is the point p=(x,y) pertaining to the straight, minimizing norm(p_1-p) + norm(p_2-p)+norm(p_3-p)?

Given p_1=(1,1), p_2=(6,3), p_3=(4,5) and the straight y = 1.5-(x-4) what is the point p=(x,y) pertaining to the straight, minimizing norm(p_1-p) + norm(p_2-p)+norm(p_3-p)?

1 Answer
Sep 6, 2016

p = (0.696452, 6.19645)

Explanation:

The line y = 1.5-(x-4) can be represented in parametric form

L->p=p_4+lambda vec v. The sought distance is given by

delta = norm(p_4+lambda vec v-p_1)+norm(p_4+lambda vec v-p_2)+norm(p_4+lambda vec v-p_3). Here

norm(p_4+lambda vec v-p_k) = sqrt(norm(p_4-p_k)^2-2lambda << p_4-p_k, vec v >> + lambda^2 norm(vec v)^2)

The minimum distance obeys the condition

(d delta)/(d lambda) = 0 and

d/(d lambda)norm(p_4+lambda vec v-p_k) = (lambda norm(vec v)^2 - << p_4-p_k, vec v >> )/norm(p_4+lambda vec v-p_k) for k=1,2,3

Solving for lambda we get

lambda = lambda_0=0.696452 and the point is

p_0=p_4+lambda_0vec v = (0.696452, 6.19645)