Given x = cost y=sin2t, how do you find the dy/dx terms parameter t and find the values parameter t points dy/dx = 0?

1 Answer
Jul 3, 2016

(dy)/(dx)=0dydx=0 at t=(2m+1)pi/4t=(2m+1)π4

Explanation:

In parametric equations x=x(t)x=x(t) and y=y(t)y=y(t), (dy)/(dx)=((dy)/(dt))/((dx)/(dt))dydx=dydtdxdt

As y=sin2ty=sin2t, (dy)/(dt)=cos2txx2=2cos2tdydt=cos2t×2=2cos2t

and as x=costx=cost, (dx)/(dt)=-sintdxdt=sint

Hence (dy)/(dx)=(-2cos2t)/sintdydx=2cos2tsint

As sint!=0sint0, when t=npit=nπ

(dy)/(dx)=0dydx=0, when cos2t=0cos2t=0 but t!=npitnπ i.e. 2t=(2m+1)pi/22t=(2m+1)π2

or t=(2m+1)pi/4t=(2m+1)π4, where mm is an integer

But note that xx and yy both are sinusoidal functions and hence their domain is limited to [-1,1][1,1] and hence as x=costx=cost, (dy)/(dx)=0dydx=0 at x=+-1/sqrt2x=±12

graph{2xsqrt(1-x^2) [-2.527, 2.473, -1.11, 1.39]}