How can you evaluate #3/(x+4)-1/(x+6)#?

2 Answers

#3/(x+4)-1/(x+6)#

Establishing a common denominator (times both the numerator and denominator by #(x+4)(x+6)#

= #(3(x+6))/((x+4)(x+6))-(x+4)/((x+4)(x+6))#

Simplifying the equation by expanding the brackets
= #(3x+18-x-4)/((x+4)(x+6))#

Simplifying to its simplest form
= #(2x+14)/((x+4)(x+6))#

May 29, 2018

#color(brown)(=> (2(x+7)) / (x^2 + 10x + 24)# or #color(blue)((2(x+7)) / ((x+4) (x+6))#

Explanation:

Evaluate #3/(x+4) - 1/(x+6)#

L C M for #(x+4), (x+6)# is #(x+4)*(x+6)#

#=> (3 * (x+6) - (x+4)) / ((x+4)*(x+6))#

#=> (3x + 18 - x - 4) / ((x+4) * (x+6))#

#color(brown)(=> (2(x+7)) / (x^2 + 10x + 24)#