Let's begin by naming our vectors.
v=<3,0>
w=<5,5>
Dot product -> v*w
Angle between formula ->cos (theta)=(v*w)/(||v||*||w||)
Solve for theta
cos^-1(cos (theta))=cos^-1((v*w)/(||v||*||w||))
theta=cos^-1((v*w)/(||v||*||w||))
Begin by finding the dot product of vectors v and w by adding the products of the horizontal and vertical components.
theta=cos^-1(((3)(5)+(0)(5))/(||v||*||w||))
theta=cos^-1((15+0)/(||v||*||w||))
Now find the magnitudes of both vectors
theta=cos^-1((15)/(sqrt(9+0)*sqrt(25+25)))
theta=cos^-1((15)/(sqrt(9)*sqrt(50)))
theta=cos^-1((15)/(sqrt(3*3*5*5*2)))
theta=cos^-1((15)/(15sqrt(2)))
theta=cos^-1((1)/(sqrt(2)))
theta=pi/4