How do I find the arc length of the curve #y=ln(sec x)# from #(0,0)# to #(pi/ 4, ln(2)/2)#?
1 Answer
May 31, 2018
Explanation:
#y=ln(secx)#
#y'=tanx#
Arc length is given by:
#L=int_0^(pi/4)sqrt(1+tan^2x)dx#
Simplify:
#L=int_0^(pi/4)secthetad theta#
Integrate directly:
#L=[ln|sectheta+tantheta|]_0^(pi/4)#
Hence
#L=ln(1+sqrt2)#