How do you find the length of the curve #y=x^5/6+1/(10x^3)# between #1<=x<=2# ?

1 Answer
Sep 11, 2014

We can find the arc length to be #1261/240# by the integral
#L=int_1^2sqrt{1+({dy}/{dx})^2}dx#

Let us look at some details.

By taking the derivative,
#{dy}/{dx}={5x^4)/6-3/{10x^4}#

So, the integrand looks like:
#sqrt{1+({dy}/{dx})^2}=sqrt{({5x^4)/6)^2+1/2+(3/{10x^4})^2#
by completing the square
#=sqrt{({5x^4)/6+3/{10x^4})^2}={5x^4)/6+3/{10x^4}#

Now, we can evaluate the integral.
#L=int_1^2({5x^4)/6+3/{10x^4})dx=[x^5/6-1/{10x^3}]_1^2=1261/240#