How do I find the area inside the cardioid r=1+costhetar=1+cosθ?

1 Answer
Aug 8, 2018

4pi4π

Explanation:

We will integrate the area differential for a polar function:
dA = d(1/2 r^2 theta) = r theta d r + 1/2 r^2 d thetadA=d(12r2θ)=rθdr+12r2dθ

We can integrate this just d thetadθ:
dA = (r theta (dr)/(d theta) + 1/2 r^2) d theta dA=(rθdrdθ+12r2)dθ

This yields
A = int\ \ dA = int_0^(2pi) ([1 + cos theta] * theta * (- sin theta) + 1/2 (1 + cos theta)^2) d theta
A = int_0^(2pi) [3/4 + 1/4 cos2theta + cos theta - theta sin theta - 1/2 theta sin 2theta] d theta

This integral is pretty simple, with a few integrations by parts.

The ultimate answer turns up to be A = 4pi.