How do I find the integral ∫x3+4x2+4dx ?
1 Answer
Aug 1, 2014
I=12x2−2ln(x2+4)+2tan−1(x2)+c , wherec is a constantExplanation,
I=∫x3+4x2+4dx
I=∫(x3x2+4+4x2+4)dx
I=∫x3x2+4dx+∫4x2+4dx
I=I1+I2 .......(i) Now considering only first integral, which is
I1=∫x3x2+4dx Using Integration by Substitution,
let's
x2=t , then2xdx=dt yields, first integral
=∫t2⋅1t+4⋅dt
=12∫tt+4⋅dt , this can be written as
=12∫t+4−4t+4⋅dt
=12∫(1−4t+4)dt
=12∫dt−2∫1t+4dt
=12t−2ln(t+4)+c1 , wherec1 is a constantreplacing
t , we get,
I1=12x2−2ln(x2+4)+c1 , wherec1 is a constantconsidering second integral
I2=∫4x2+4dx using Trigonometric Substitution to solve this problem,
I2=4⋅12tan−1(x2)+c2
I2=2tan−1(x2)+c2 Finally, plugging in both
I1 andI2 in(i)
I=12x2−2ln(x2+4)+c1+2tan−1(x2)+c2
I=12x2−2ln(x2+4)+2tan−1(x2)+c , wherec=c1+c2 is again a constant